On the notion of Necessary and Possibly Interactions in MCDA

Denis Bouyssou \& Brice Mayag

University Paris Dauphine
LAMSADE
FRANCE

Workshop Criteria Interaction June 2017

Example (Classic example)

	$1:$ Mathematics (M)	$2:$ Statistics (S)	$3:$ Language (L)
a	16	13	7
b	16	11	9
c	6	13	7
d	6	11	9

- for a student "good" in Mathematics, Language is more important than Statistics

$$
\begin{equation*}
\Longrightarrow b P a, \tag{1}
\end{equation*}
$$

- for a student "bad" in Mathematics, Statistics is more important than Language

$$
\begin{equation*}
\Longrightarrow c P d . \tag{2}
\end{equation*}
$$

These preferences are not representable by an additive model.

We need a non-additive model

- Which model we have to choose?
- Here, we choose an extension of an additive model allowing interaction among criteria: a 2 -additive Choquet integral.

Definition

For any $z:=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{R}^{+}$, the expression of the 2-additive Choquet integral is:

$$
\begin{equation*}
C_{\mu}\left(z_{1}, \ldots, z_{n}\right)=\sum_{i=1}^{n} V_{i}^{\mu} z_{i}-\frac{1}{2} \sum_{\{i, j\} \subseteq N} l_{i j}^{\mu}\left|z_{i}-z_{j}\right| \tag{3}
\end{equation*}
$$

where

- $V_{i}^{\mu} \equiv$ Shapley value of i, is the importance of the criterion i
- $I_{i j}^{\mu}=\mu(\{i, j\})-\mu(\{i\})-\mu(\{j\}$ is the interaction index between criteria i and j (w.r.t. μ).

A 2-additive Choquet integral

- It seems a good compromise between the arithmetic mean and the general Choquet integral;
- It assumes that only interactions between two criteria are meaningful;
- Its interaction index $l_{i j}^{\mu}$ is not difficult to interpret (Really?):
- $l_{i j}^{\mu}=\mu(\{i, j\})-\mu(\{i\})-\mu(\{j\}>0 \Longrightarrow$ complementary between i and j
- $l_{i j}^{\mu}=\mu(\{i, j\})-\mu(\{i\})-\mu(\{j\}<0 \Longrightarrow$ substitutability between i and j
- $I_{i j}^{\mu}=\mu(\{i, j\})-\mu(\{i\})-\mu(\{j\}=0 \Longrightarrow$ Independence between i and j

Example (Classic example)

	1: Mathematics (M)	$2:$ Statistics (S)	3: Language (L)
a	16	13	7
b	16	11	9
c	6	13	7
d	6	11	9

$\begin{array}{llllllll}\text { Par. } 1 & \text { Par. } 2 & \text { Par. } 3 & \text { Par. } 4 & \text { Par. } 5 & \text { Par. } 6 & \text { Par. } 7 & \text { Par. } 8\end{array}$

$C_{\mu}(a)$	8.5	13.75	9.1	13.765	13.75	13.75	11.47	12.535
$C_{\mu}(b)$	9.5	14.25	9.7	13.995	14.25	14.25	11.93	12.785
$C_{\mu}(c)$	7.75	9.75	7.75	11.325	11.25	9.75	9.45	9.515
$C_{\mu}(d)$	7.25	9.25	7.25	10.295	9.75	9.25	8.91	9.265
μ_{M}	0	0.75	0	0.685	0.75	0.75	0.36	0.485
μ_{S}	0.25	0.5	0.25	0.73	0.75	0.5	0.465	0.455
μ_{L}	0	0.25	0	0.315	0	0	0.205	0.32
$\mu_{M S}$	0.25	0.75	0.35	0.785	0.75	0.75	0.565	0.68
$\mu_{M L}$	0.75	1	0.65	1	0.1	0.75	0.805	0.795
$\mu_{S L}$	0.25	0.75	0.25	0.945	0.75	0.75	0.66	0.785
V_{M}^{μ}	0.375	0.5	0.375	0.37	0.5	0.5	0.35	0.35
V_{S}^{μ}	0.25	0.25	0.3	0.365	0.375	0.375	0.33	0.33
V_{L}^{μ}	0.375	0.25	0.325	0.265	0.125	0.125	0.32	0.32
		0						
$I_{M S}^{\mu}$	0	-0.5	0.1	-0.63	-0.75	-0.5	-0.26	-0.26
$I_{M L}^{\mu}$	0.75	0	0.65	0	0.25	0	0.24	-0.01
$I_{S L}^{\mu}$	0	0	0	-0.1	0	0.25	-0.01	0.01

Example (Classic example)

	1: Mathematics (M) 2			2 : Statistics (S) 3		3 : Language (L)	
a		16		13		7	
b		16		11		9	
c		6		13		7	
d		6		11		9	
	Par. 9	Par. 10	Par. 11	Par. 12	Par. 13	Par. 14	Par. 15
$C_{\mu}(\mathrm{a})$	15.55	10.627	10.45	9.28	11.41	5.29	12.655
$C_{\mu}(b)$	15.65	10.749	10.75	9.76	11.91	7.35	12.825
$C_{\mu}($ c $)$	10.3	8.814	7.85	7.96	9.39	6.91	9.635
$C_{\mu}($ d $)$	10.1	8.01	7.55	7.4	8.89	6.81	9.305
μ_{M}	0.95	0.135	0.15	0	0.36	0	0.485
μ_{S}	0.55	0.402	0.25	0.28	0.455	0.195	0.475
μ_{L}	0.45	0.07	0	0.01	0.195	0.115	0.32
$\mu_{M S}$	0.95	0.537	0.5	0.38	0.555	0.195	0.7
$\mu_{M L}$	1	0.668	0.55	0.63	0.795	0.655	0.795
$\mu_{S L}$	1	0.402	0.35	0.28	0.66	0.46	0.785
V^{μ}	0.475	0.3665	0.4	0.36	0.35	0.27	0.35
V_{S}^{M}	0.275	0.367	0.35	0.325	0.33	0.27	0.34
V_{L}^{μ}	0.25	0.2665	0.25	0.315	0.32	0.46	0.31
$I_{M S}^{\mu}$	-0.55	0	0.1	0.1	-0.26	0	-0.26
$I_{M L}^{\prime \mu}$	-0.4	0.463	0.4	0.62	0.24	0.54	-0.01
$I_{S L}^{\mu}$	0	-0.07	0.1	-0.01	0.01	0.15	-0.01

Example (Classic example)

	$1:$ Mathematics (M)	$2:$ Statistics (S)	$3:$ Language (L)
a	16	13	7
b	16	11	9
c	6	13	7
d	6	11	9

- In this example, it seems clear that it is not easy to interpret the interaction between two criteria.
- Could we conclude that the subjects Mathematics and Statistics are complementary, redundant or independent? Answering this question is not obvious.
- In fact, the only information provided by the preferences b P a and $c P d$ is that: "the three criteria (subjects) are not independent" i.e. the three interaction indices cannot be null simultaneously.

Definition (Necessary and Possibly interaction)

Let be $i, j \in N, i \neq j$ and $\mathcal{C}_{\text {pref }}$ the set of all capacities compatible with a preference information given by the DM.
(3) There exists a possible positive (respectively negative) interaction between i and j if there exists a capacity $\mu \in \mathcal{C}_{\text {pref }}$ such that $I_{i j}^{\mu}>0$ (respectively $l_{i j}^{\mu}<0$).
(2) There exists a necessary positive (respectively negative) interaction between i and j if $\Lambda_{i j}^{\mu}>0$ (respectively $\left.\Lambda_{i j}^{\mu}<0\right)$ for all capacity $\mu \in \mathcal{C}_{\text {pref }}$.
(3) i and j are possibly without interaction if there exists a capacity $\mu \in \mathcal{C}_{\text {pref }}$ such that $I_{i j}^{\mu}=0$.
(1) i and j are necessary without interaction if $\zeta_{i j}^{\mu}=0$ for all capacity $\mu \in \mathcal{C}_{\text {pref }}$.

Hypotheses

- DM is able to identify two reference levels: $\left\{\begin{array}{l}0_{i} \in X_{i} \text { that is neutral } \\ \mathbf{1}_{i} \in X_{i} \text { that is satisfactory }\end{array}\right.$ on each attribute i
- The DM is able to give a preference information $\{P, I\}$ on the following set of binary actions (alternatives) \mathcal{B}

Definition

A binary action is an element of the set

$$
\mathcal{B}=\left\{\mathbf{0}_{N},\left(\mathbf{1}_{i}, \mathbf{0}_{N-i}\right),\left(\mathbf{1}_{i j}, \mathbf{0}_{N-i j}\right), i, j \in N, i \neq j\right\}
$$

where

- $\mathbf{0}_{N}=\left(\mathbf{1}_{\emptyset}, \mathbf{0}_{N}\right)=$: a_{0} is the action considered neutral on all criteria.
- $\left(\mathbf{1}_{i}, \mathbf{0}_{N-i}\right)=: a_{i}$ is an action considered satisfactory on criterion i and neutral on the other criteria.
- $\left(\mathbf{1}_{i j}, \mathbf{0}_{N-i j}\right)=: a_{i j}$ is an action considered satisfactory on criteria i and j and neutral on the other criteria.

Theorem (The case $I=\emptyset$)
There always exists a possible positive interaction between two criteria i and j, i.e.

- i and j are not necessary without interaction.
- i and j are not necessary interact negatively.

Theorem (The case $I \neq \emptyset$)
The interaction between two criteria i and j is necessary negative

$$
\left[\begin{array}{c}
\Uparrow \\
{\left[a_{i j} \sim a_{i} \text { and } a_{j} T C_{P} \quad a_{0}\right] \text { (2-MOPI property). } . ~}
\end{array}\right.
$$

Example (A particular case)
$\left[a_{i j} / a_{i}\right.$ and $\left.a_{j} P a_{0}\right] \Longrightarrow$ the interaction between i and j is necessary negative.

