On the notion of Necessary and Possibly Interactions in MCDA

Denis Bouyssou & Brice Mayag

University Paris Dauphine LAMSADE FRANCE

Workshop Criteria Interaction June 2017

Denis Bouyssou & Brice Mayag (LAMSADE)

Necessary and Possibly Interactions

Workshop Criteria Interaction June 2017 1 / 11

4 1 1 1 4

	1 : Mathematics (M)	2: Statistics (S)	3: Language (L)
а	16	13	7
Ь	16	11	9
с	6	13	7
d	6	11	9

• for a student "good" in Mathematics, Language is more important than Statistics

 $\implies b P a,$ (1)

• for a student "bad" in Mathematics, Statistics is more important than Language

 \implies c P d.

(2)

These preferences are not representable by an additive model.

We need a non-additive model

- Which model we have to choose?
- Here, we choose an extension of an additive model allowing interaction among criteria: a 2-additive Choquet integral.

Definition

For any $z := (z_1, \ldots, z_n) \in \mathbb{R}^+$, the expression of the 2-additive Choquet integral is:

$$C_{\mu}(z_1,\ldots,z_n) = \sum_{i=1}^{n} V_i^{\mu} z_i - \frac{1}{2} \sum_{\{i,j\} \subseteq N} I_{ij}^{\mu} |z_i - z_j|$$
 (3)

where

- $V_i^{\mu} \equiv$ Shapley value of *i*, is the importance of the criterion *i*
- $I_{ij}^{\mu} = \mu(\{i, j\}) \mu(\{i\}) \mu(\{j\})$ is the interaction index between criteria *i* and *j* (w.r.t. μ).

A 2-additive Choquet integral

- It seems a good compromise between the arithmetic mean and the general Choquet integral;
- It assumes that only interactions between two criteria are meaningful;
- Its interaction index I^μ_{ii} is not difficult to interpret (Really?):
 - $I_{ij}^{\mu} = \mu(\{i, j\}) \mu(\{i\}) \mu(\{j\} > 0 \implies \text{complementary between } i \text{ and } j$
 - $I_{ij}^{\mu} = \mu(\{i, j\}) \mu(\{i\}) \mu(\{j\} < 0 \implies substitutability between i and j$
 - $I_{ij}^{\mu} = \mu(\{i, j\}) \mu(\{i\}) \mu(\{j\} = 0 \implies \text{Independence between } i \text{ and } j$

a b c d	1 : Mathematics (M) 16 16 6 6 6		2 : Statistics (S) 13 11 13 11 13 11		3 : Language (L) 7 9 7 9			
	Par.1	Par.2	Par.3	Par.4	Par.5	Par.6	Par.7	Par.8
$C_{\mu}(a)$	8.5	13.75	9.1	13.765	13.75	13.75	11.47	12.535
$C_{\mu}(b)$	9.5	14.25	9.7	13.995	14.25	14.25	11.93	12.785
$C_{\mu}(c)$	7.75	9.75	7.75	11.325	11.25	9.75	9.45	9.515
$C_{\mu}(d)$	7.25	9.25	7.25	10.295	9.75	9.25	8.91	9.265
μ_M	0	0.75	0	0.685	0.75	0.75	0.36	0.485
μ_S	0.25	0.5	0.25	0.73	0.75	0.5	0.465	0.455
μ_L	0	0.25	0	0.315	0	0	0.205	0.32
μ_{MS}	0.25	0.75	0.35	0.785	0.75	0.75	0.565	0.68
μ_{ML}	0.75	1	0.65	1	0.1	0.75	0.805	0.795
μ_{SL}	0.25	0.75	0.25	0.945	0.75	0.75	0.66	0.785
V^{μ}_{M}	0.375	0.5	0.375	0.37	0.5	0.5	0.35	0.35
V_S^{μ}	0.25	0.25	0.3	0.365	0.375	0.375	0.33	0.33
V_L^{μ}	0.375	0.25	0.325	0.265	0.125	0.125	0.32	0.32
I_{MS}^{μ}	0	-0.5	0.1	-0.63	-0.75	-0.5	-0.26	-0.26
$I_{ML}^{\mu\nu}$	0.75	0	0.65	0	0.25	0	0.24	-0.01
I_{SI}^{μ}	0	0	0	-0.1	0	0.25	-0.01	0.01

Denis Bouyssou & Brice Mayag (LAMSADE)

	1: Math	ematics (M) 2:5	Statistics	(S) 3:	Language	e (L)
а		16		13		7	
Ь		16		11		9	
с		6		13		7	
d		6		11		9	
	Par.9	Par.10	Par.11	Par.12	Par.13	Par.14	Par.15
	1 81.5	1 81.10	1 01.11	1 01.12	1 81.15	1 01.14	1 81.15
$C_{\mu}(a)$	15.55	10.627	10.45	9.28	11.41	5.29	12.655
$C_{\mu}(b)$	15.65	10.749	10.75	9.76	11.91	7.35	12.825
$C_{\mu}(c)$	10.3	8.814	7.85	7.96	9.39	6.91	9.635
$C_{\mu}(d)$	10.1	8.01	7.55	7.4	8.89	6.81	9.305
μ_M	0.95	0.135	0.15	0	0.36	0	0.485
μ_S	0.55	0.402	0.25	0.28	0.455	0.195	0.475
μ_L	0.45	0.07	0	0.01	0.195	0.115	0.32
μ_{MS}	0.95	0.537	0.5	0.38	0.555	0.195	0.7
μ_{ML}	1	0.668	0.55	0.63	0.795	0.655	0.795
μ_{SL}	1	0.402	0.35	0.28	0.66	0.46	0.785
V^{μ}_{M}	0.475	0.3665	0.4	0.36	0.35	0.27	0.35
$V_{S_{\mu}}^{\mu}$	0.275	0.367	0.35	0.325	0.33	0.27	0.34
V_L^{μ}	0.25	0.2665	0.25	0.315	0.32	0.46	0.31
I_{MS}^{μ}	-0.55	0	0.1	0.1	-0.26	0	-0.26
	-0.4	0.463	0.4	0.62	0.24	0.54	-0.01
I_{SI}^{μ}	0	-0.07	0.1	-0.01	0.01	0.15	-0.01

Denis Bouyssou & Brice Mayag (LAMSADE)

	1 : Mathematics (M)	2 : Statistics (S)	3 : Language (L)
а	16	13	7
Ь	16	11	9
с	6	13	7
d	6	11	9

- In this example, it seems clear that it is not easy to interpret the interaction between two criteria.
- Could we conclude that the subjects Mathematics and Statistics are complementary, redundant or independent? Answering this question is not obvious.
- In fact, the only information provided by the preferences *b P a* and *c P d* is that: "the three criteria (subjects) are not independent" i.e. **the three interaction indices cannot be null simultaneously**.

4 E 6 4

Definition (Necessary and Possibly interaction)

Let be $i, j \in N$, $i \neq j$ and C_{pref} the set of all capacities compatible with a preference information given by the DM.

- There exists a possible positive (respectively negative) interaction between *i* and *j* if there exists a capacity µ ∈ C_{pref} such that I^µ_{ij} > 0 (respectively I^µ_{ij} < 0).</p>
- Solution There exists a necessary positive (respectively negative) interaction between *i* and *j* if I^µ_{ij} > 0 (respectively I^µ_{ij} < 0) for all capacity µ ∈ C_{pref}.
- I and j are possibly without interaction if there exists a capacity µ ∈ C_{pref} such that I^µ_{ij} = 0.

• *i* and *j* are **necessary without interaction** if $I_{ij}^{\mu} = 0$ for all capacity $\mu \in C_{pref}$.

Hypotheses

- DM is able to identify two reference levels: $\begin{cases} \mathbf{0}_i \in X_i \text{ that is neutral} \\ \mathbf{1}_i \in X_i \text{ that is satisfactory} \end{cases}$ on each attribute *i*
- The DM is able to give a preference information {P, I} on the following set of binary actions (alternatives) B

Definition

A binary action is an element of the set

$$\mathcal{B} = \{\mathbf{0}_{N}, (\mathbf{1}_{i}, \mathbf{0}_{N-i}), (\mathbf{1}_{ij}, \mathbf{0}_{N-ij}), i, j \in N, i \neq j\}$$

where

- $\mathbf{0}_N = (\mathbf{1}_{\emptyset}, \mathbf{0}_N) =: a_0$ is the action considered neutral on all criteria.
- (1_i, 0_{N-i}) =: a_i is an action considered satisfactory on criterion i and neutral on the other criteria.
- (1_{ij}, 0_{N-ij}) =: a_{ij} is an action considered satisfactory on criteria i and j and neutral on the other criteria.

9 / 11

Theorem (The case $I = \emptyset$)

There always exists a possible positive interaction between two criteria i and j,

i.e.

- i and j are not necessary without interaction.
- i and j are not necessary interact negatively.

Workshop Criteria Interaction June 2017

Theorem (The case $I \neq \emptyset$)

Example (A particular case)

 $[a_{ij} \mid a_i \text{ and } a_j \mid P \mid a_0] \implies$ the interaction between *i* and *j* is necessary negative.

Workshop Criteria Interaction June 2017